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PREAMBLE

Radionuclide myocardial perfusion imaging (MPI) is among the
most commonly performed diagnostic tests in cardiology. Although
the diagnostic and prognostic applications of radionuclide MPI are
supported by a wealth of observational and clinical trial data, its
performance is limited by two fundamental drawbacks. First, con-
ventional MPI by SPECT and PET measures relative perfusion, that

is, the assessment of regional myocardial perfusion relative to the
region with the highest perfusion tracer uptake. This means that a

global reduction in myocardial perfusion (“balanced” reduction of

flow) may remain undetected and that, in general, the extent of

coronary artery disease (CAD) is underestimated, as has been dem-

onstrated with both 201Tl- and 99mTc-labeled perfusion tracers
(1–3). For example, Lima et al. found that in patients with severe

3-vessel CAD, 99mTc-sestamibi SPECT MPI showed perfusion

defects in multivessel and typical 3-vessel-disease patterns in only

46% and 10% of patients, respectively (2). Similarly, it has been

reported that only 56% of patients with left main CAD are iden-

tified as being at high risk by having more than 10% of the myo-
cardium abnormal on stress SPECT MPI (4). Second, the 99mTc flow

tracers available for SPECT MPI are inherently limited by a relatively

low first-pass extraction fraction at high flow rates, thus limiting the

precision and accuracy of these tracers for estimation of myocardial
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blood flow (MBF) during stress (5). Clinical studies have shown
that even small differences in extraction fraction can result in a
clinical difference in the detection and quantification of myocar-
dial ischemia by SPECT (6,7).
These drawbacks of SPECT are addressed by PET, with its

ability to quantify global and regional MBF (in mL/min/g of
tissue), assess regional perfusion abnormalities with relative
MPI, and assess contractile function abnormalities and chamber
dimensions with gated imaging. The purpose of this document is,
first, to consolidate and update technical considerations for clinical
quantification of MBF and myocardial flow reserve (MFR) from
earlier documents (8) and, second, to summarize and update the
scientific basis for their clinical application (9,10).

TECHNICAL CONSIDERATIONS

Perfusion Tracers

The available PET tracers for conventional MPI and quantitative
MBF imaging are shown in Table 1. The most commonly used tracers
are 82Rb-chloride and 13N-ammonia, with a small number of centers
worldwide using 15O-water. 18F-flurpiridaz is currently under inves-
tigation, with one phase III trial completed and a second trial awaiting
initiation. Because of their short half-lives, 13N-ammonia and
15O-water require an on-site cyclotron. In contrast, 18F-flurpiridaz,
because of its longer isotope half-life (;2 h), can be produced at
regional cyclotron or radiopharmacy facilities and distributed as a
unit dose. 82Rb has a short half-life and is produced from an
82Sr/82Rb generator lasting 4–8 weeks (11,12), depending on initial
activity and desired radiotracer activity. The short half-lives of
82Rb and 15O-water enable fast rest–stress imaging protocols

(;20–30 min), but count statistics and standard MPI quality can
be limited by the rapid isotope decay. 82Rb also has a long positron
range, but this does not limit the achievable spatial resolution in
practice, because of image reconstruction postfiltering and cardio-
respiratory motion. The radiation effective dose (mSv/GBq) is
an order of magnitude lower for the short-lived isotopes than for
18F-flurpiridaz; however, the dose absorbed by the patient can be
lowered by reducing the total injected activity at the expense of
longer imaging times for conventional MPI.
The physiologic properties of an ideal perfusion tracer for MBF

quantification would include 100% extraction from blood to tissue,
and 100% retention (no washout), resulting in a linear relationship
between MBF and the measured tracer activity over a wide range.
The currently available PET perfusion tracers, however, have
limited (,100%) extraction and retention, resulting in a nonlinear
(but still monotonic) relationship between MBF, tracer uptake, and
retention rates as illustrated in Figure 1. 15O-water and 13N-ammonia
have close to 100% initial (unidirectional) extraction over a wide
range of MBF values, resulting in a tracer uptake rate (K1) that
is close to the true MBF (Fig. 1C). Rapid early washout reduces
the tracer retention of 13N-ammonia to approximately 50%–60% at
peak stress MBF values. 15O-water washes out so rapidly that there
is effectively no tracer retention in cardiac tissue above the blood
background level (Fig. 1D). 82Rb has a substantially lower extrac-
tion fraction (;35% at peak stress) and tracer retention than does
13N-ammonia. Although only limited data are available, 18F-flurpiridaz
appears to have extraction and retention values similar to or slightly
higher than those of 13N-ammonia (13,14). These physiologic
properties of the particular perfusion tracer have a direct bearing
on the optimal choice of kinetic model for image analysis and

TABLE 1
Properties of Radiotracers Used for PET MBF Quantification

Property 82Rb-chloride 13N-ammonia 15O-water 18F-flurpiridaz

Isotope production method Generator Cyclotron Cyclotron Cyclotron

Isotope half-life (min) 1.27 10 2.0 110

Positron range (mm) RMS 2.6 0.57 1.0 0.23

Image resolution (mm) FWHM 8 5 6 5

Effective dose (mSv/GBq) 1 2 1 20

Peak stress/rest* extraction (%) 35/70 95/100 100 95/100

Peak stress/rest* retention (%) 25/70 50/90 0 55/90

Spillover from adjacent organs Stomach wall Liver and lung Liver Early liver

Regulatory status FDA-approved;

2 suppliers

FDA-approved; ANDA

required for onsite production

Not FDA-approved Phase 3 trials

partially completed

Typical rest dose for 3D/2D (mCi†) 30/45 10/15 20/30 2/3

Typical stress dose for 3D/2D (mCi†) 30/45 10/15 20/30 6/7

Protocol features Rapid protocol Permits exercise‡;

delay of 4–5 half-lives
between rest and stress

unless different doses used

Rapid protocol;

no tracer retention
for routine MPI

Permits exercise‡;

different doses
for rest and

stress required

*Peak stress 5 3–4 mL/min/g, rest 5 0.75–1.0 mL/min/g.
†1 mCi 5 37 MBq.
‡Exercise protocols do not allow quantification of MBF.
RMS 5 root mean square (standard) deviation; FWHM 5 full width at half maximum achievable using PET scanner with 5-mm spatial

resolution; FDA 5 Food and Drug Administration; ANDA 5 abbreviated new drug application.
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MBF quantification, as illustrated in Figure 2. Limited spatial
resolution causes spillover or blurring of uptake signals from ad-
jacent organs—an effect that varies somewhat between tracers and
is a potential concern for accurate MBF quantification (Table 1).

Scanner Performance

Contemporary PET scanners operate in 3-dimensional (3D)
acquisition mode, as opposed to the older 2-dimensional (2D)
(or 2D/3D) systems that were constructed with interplane septa
designed to reduce scatter. 3D systems generally require lower
injected activity, with a concordant reduction in patient radiation
effective dose. For the short-lived tracers 82Rb and 15O-water,
injected activities of as high as 2,220–3,330 MBq (60–90 mCi)
were commonly used with 2D PET systems. However, this amount
of activity will cause detector saturation on 3D PET systems;
therefore, the injected activity must be reduced to avoid these
effects (15). Weight-based dosing may help to provide consistent
image quality and accurate MBF quantification, but the maximum
tolerated activity can vary greatly between 3D PET systems (15).
Careful consideration should be given to optimizing injected doses
to avoid detector saturation during the blood pool first-pass uptake
phase while also preserving sufficient activity in the tracer reten-
tion (tissue) phase to allow high-quality images for MPI interpre-
tation. The ultrashort half-life of 82Rb is particularly challenging
in this regard (Fig. 3). Importantly, detector saturation will gener-
ally result in falsely elevated MBF assessments due to underesti-
mation of the blood input function. Newer solid-state detectors
should further increase the dynamic range of 3D PET systems,
reducing the need to trade off MPI quality for MBF accuracy.

Image Acquisition and Analysis

Quantification of MBF requires accurate
measurement of the total tracer activity
transported by the arterial blood and de-
livered to the myocardium over time.
Measurements of arterial isotope activity
versus time (time–activity curves) are typ-
ically acquired using image regions located
in the arterial blood pool (e.g., left ventri-
cle, atrium, or aorta). As only the tracer in
plasma is available for exchange with the
myocardial tissues, whole-blood–to–plasma
corrections may be required to account for
tracer binding to plasma proteins, red blood
cell uptake, hematocrit, and appearance of
labeled metabolites in the blood. For exam-
ple, 13N-labeled metabolites (urea, gluta-
mine, glutamate) accumulate in the blood
and account for 40%–80% of the total ac-
tivity as early as 5 min after injection of
13N-ammonia (16).
With older 2D PET systems, a single

static scan may be adequate for accurate
integration of the blood time–activity data
(17), because dead-time losses and ran-
dom rates are low and change relatively
slowly over time. However, with current
3D PET systems, dead-time losses and ran-
dom rates are much higher and more rap-
idly changing during the bolus first-pass
transit; therefore, dynamic imaging with
reconstruction of sequential short time-

frames is typically required for accurate sampling and integration
of the arterial blood activity. Some standardization of image ac-
quisition and reconstruction protocols for accurate MBF quantifi-
cation has occurred, but it is not universally applied. Dynamic
frame-rates typically vary from 5 to 10 s during the first-pass transit
through the heart and from 1 to 5 minutes during the later tissue
phase. Minimal postreconstruction smoothing should be applied on
the dynamic image series. Excess filtering increases adjacent organ
spillover effects and can bias the MBF measurements.
In practice, list-mode acquisition is recommended because it

allows flexibility in the timing and reconstruction of dynamic
images for MBF, static images for MPI, electrocardiography-
gated images for left ventricular ejection fraction, and respira-
tion-gated images for quality assurance assessment of breathing
artifacts. Further discussion can be found in the “Image Acquisition
and Reconstruction Parameters” section. Scatter from intense or
focal activity near the edge of the field of view can also bias the
3D scatter correction, leading to artifacts (18). Therefore, when
using 3D PET, it is important to flush the tracer injection line with
a volume of saline high enough to clear the tracer activity out of the
cephalic, axillary, and subclavian veins.
To estimate MBF from dynamic PET images, time–activity

curves are fit to a mathematic model describing the tracer kinetics
over time (19). Various models have been proposed and evaluated,
but the two most commonly used for 82Rb and 13N-ammonia are
the 1-tissue-compartment model (20) and the simplified retention
model (17). Both models have the same conceptual property of
normalizing the late-phase myocardial activity to account for the
total amount of tracer that was delivered by the arterial blood. An

FIGURE 1. Radiotracer unidirectional extraction fractions (A) used with compartmental model-

ing of tracer uptake rates K1 (C), and radiotracer retention fractions (B) used with simplified

retention modeling of tracer net uptake (D). Underlying data were obtained from previous pub-

lications (14,22,221,228,229). Limited data suggest that properties of 18F-flurpiridaz are similar to

those of 13N-ammonia. Shaded regions represent variability in reported values.
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example analysis of a 1-tissue-compartment model is shown for a
stress 13N-ammonia PET scan in Figure 2. The MBF polar map is
estimated using an assumed tracer-specific unidirectional extraction
fraction dependent on MBF (EF 5 1 – e–PS/MBF, where PS is the
permeability–surface area product) and the measured uptake rate
constant (K1/EF 5 MBF), as well as regional corrections for total
blood volume (TBV) and partial-volume underestimation (1 – TBV)
of the myocardial activity.

The simplified retention model can be
considered as a special case of the 1-tissue-
compartment model (neglecting the effects
of tracer washout), in which case MBF
must be estimated using the assumed tracer
retention fraction (RF), together with the
late-phase tissue activity (retention) mea-
sured after the first-pass transit (retention/
RF 5 MBF). As shown in Figure 1, the
extraction and retention fractions for 82Rb
are fairly similar, whereas the extraction of
13N-ammonia is much higher (near unity)
than the myocardial retention. The effects
of tracer extraction, washout, and retention
on image contrast in abnormally perfused
myocardium (defects) are illustrated in Figure
2. A further simplification has been pro-
posed to measure an index of stress–rest
MFR using 18F-flurpiridaz SUVs only (14).
SUVs are unitless and measured simply
as the late-phase myocardial activity di-
vided by the total injected dose/kg of body
weight. This method still requires addi-
tional validation but could simplify the
stress–rest protocols substantially by remov-
ing the need for first-pass transit imaging
and tracer kinetic modeling analysis.
Under resting conditions, autoregulation

of myocardial tissue perfusion occurs in
response to local metabolic demands. Rest-
ing MBF has been shown to vary linearly
according to the product of heart rate and

systolic blood pressure (21). Adjustment of resting MBF to account
for changes in the heart rate–pressure product (RPP) should be
considered as part of the interpretation of stress–rest MFR values,
which can otherwise appear abnormal despite adequate stress MBF.
Adjusted values are computed as MBFADJ 5 MBFREST/RPPREST ·
RPPREF, where RPPREF is a reference value such as 8,500 reported
for a typical CAD population (discussed in detail in the “Resting
MBF” section) (22). Interpretation of the stress MBF together with
the MFR is a complementary method to account for the confound-
ing effects of resting hemodynamics on measured MFR (23).
To ensure accurate estimates of MBF and MFR, it is critical to

verify that each dynamic series is acquired and analyzed correctly,
with thorough review of quality assurance information as illus-
trated in Figure 4. Dynamic time–activity curves must include at
least one background (zero-value) frame to ensure adequate sam-
pling of the complete arterial blood input function. Assessment
and correction of patient motion between the first-pass transit
phase and the late-phase myocardial retention images are essen-
tial, as this can otherwise introduce a large bias in the estimated
MBF values (24). The peak height of blood pool time–activity
curves at rest and stress should be comparable (or slightly lower
at stress) if similar radiotracer activities are injected. If there are
substantial differences, extravasation or incomplete delivery of
tracer may have occurred and may result in inaccurate MBF esti-
mates (Fig. 5). The shape of the blood input function should also
be standardized as much as possible (e.g., 30-s square wave), as
variations in tracer injection profile have been shown to adversely
affect MBF accuracy (25) and test–retest repeatability, in particu-
lar when using the simplified retention model (26). Blood pool

FIGURE 2. Polar maps demonstrating MBF, uptake, and retention along with their relationship

to traditional relative MPI in example using 13N-ammonia. Uptake of tracer is determined by local

MBF. However, because most PET tracers have incomplete extraction at higher MBFs, tracer

uptake in high-MBF regions may be reduced (note that intense red regions on MBF image are

less intense on uptake image). Furthermore, tracer retention is usually limited in high-MBF regions.

Consequently, contrast between high- and low-MBF regions is further reduced on retention images.

Standard myocardial perfusion images are produced by normalizing retention images such that

regions of greatest retention are scaled to 100%. This does not restore contrast between defect and

normal regions. MBF quantification restores contrast and adds absolute scale (mL/min/g).

FIGURE 3. Decay of typical 370-MBq (10 mCi) dose of 13N-ammonia

(solid black line) and 1,665-MBq (45 mCi) dose of 82Rb (dashed line).

Because of the ultrashort half-life of 82Rb, higher activities must be admin-

istered to ensure reasonable counting rates during delayed tissue-phase

imaging (blue region) for generation of gated and static images for MPI

interpretation. However, this results in high counting rates during blood-

pool phase (green region) and the potential for detector saturation. Actual

threshold for detector saturation will vary with scanner performance.
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time–activity curves should also be visually examined for multiple
peaks or broad peaks, which may suggest poor-quality injections due
to poor-quality intravenous catheters, arm positioning, or other factors.
Goodness-of-fit metrics such as residual x2 and coefficient of deter-
mination, R2, should be consistently low and high, respectively. Stan-
dardization of software analysis methods has been reported for
13N-ammonia (27) and 82Rb (28–30), but significant variation remains
among some vendor programs. Further standardization of image ac-
quisition and analysis methods will have the benefit of allowing reli-
able pooling of MBF data as part of large, multicenter clinical trials.

Key Points

• Accurate and reproducible quantification of MBF is possible
with both 13N-ammonia and 82Rb (both of which are Food
and Drug Administration–approved).

• Consistent tracer injection profiles improve the reproducibil-
ity of MBF measurements.

• The administered dose must be adjusted to avoid detector
saturation during the blood pool phase, which can be partic-
ularly challenging with 82Rb.

• List-mode acquisition enables reconstruction of static, gated,
and dynamic datasets. Dynamic datasets are used for
blood flow quantification with compartmental modeling.

PROTOCOLS

Planning or Protocoling

This important step optimizes image quality, diagnostic
accuracy, and safety. A personalized protocol for each patient con-
siders the clinical history, reason for the test, patient preferences,

and contraindications for stress agent. Reproducibility of the stress
agent is critical for quantitative MBF studies to evaluate disease
progression or response to therapy and requires the same stress
agent, radiotracer, and software program.

Stress Test Procedure

The choice of hyperemic stress protocol is an important
consideration for measurement and interpretation of MFR.
Pharmacologic stress is generally required for MBF imaging
because dynamic first-pass images must be acquired with the patient
on the scanner bed. Although exercise stress may be preferred in
some patients because of the added prognostic value of exercise
capacity and electrocardiographic changes, the measured increase
in rest-to-stress MBF is generally lower with exercise than with
pharmacologic stress using adenosine, regadenoson, or dipyrida-
mole. Exercise stress also reduces uptake by and spillover from
adjacent organs such as the stomach and thus could reduce a
potential source of artifact from MBF measurements. The use of
supine bicycle exercise MBF imaging has been reported, but some
detrimental effects of patient body motion may be expected. Further,
this approach may be difficult to implement with the current
generation of PET/CT scanners with longer imaging gantries.
Patient preparation for pharmacologic stress with PET is the

same as for 99mTc SPECT MPI (31). Patients fast for a minimum
of 4 h, avoid smoking for at least 4 h, and avoid caffeine intake
for at least 12 h before vasodilator stress (32–34). Vasodilator
stress with adenosine (35), dipyridamole (36), and regadenoson
(37) has been evaluated using 13N-ammonia, 82Rb-chloride, and
15O-water. After excluding contraindications, a stress agent is
infused on the basis of standard protocols (Table 2). The timing

FIGURE 4. Example 82Rb stress PET study quality assurance for PET quantification of MBF, including orientation of left ventricular long axis (A),

sampling of myocardium and arterial blood regions (B), motion detection, dynamic time–activity curves and kinetic modeling curve-fit (C), regional

MBF (FLOW) and total blood volume (TBV) maps, as well as χ2 and R2 goodness-of-fit metrics (D).
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of isotope injection varies for each stress agent. There is no
advantage to using modified protocols such as high-dose dipyr-
idamole or hand grip (attenuated hyperemic MBF) during
dipyridamole stress and MBF imaging with PET (38). If vaso-
dilator stress is contraindicated, dobutamine combined with
atropine stress is an alternate and provides maximal hyperemia

equivalent to that with dipyridamole (39–41), although there
are some data indicating the contrary (42–44). Hyperemia from
pharmacologic stress may be reversed for significant ischemic
electrocardiography changes or symptoms about 3–4 min after
the start of imaging, without jeopardizing quantitative MBF
information.

FIGURE 5. Test–retest dynamic 82Rb PET MBF scans acquired at 3 and 13 min after dipyridamole stress. Typical injection profile (A) is shown with

single peak of blood input curve (red) at ∼30 s after scan start time. Poor-quality injection profile (B) shows delayed rise and double-peak of blood

input curve, suggesting partial obstruction of intravenous line during tracer administration. Tracer uptake curves (dark blue) and polar maps (activity)

are similar after 3–6 min, suggesting that full 82Rb dose was eventually delivered. However, inconsistent curve shapes result in markedly different

MBF estimates (3.7 vs. 2.3 mL/min/g), as derived from blood-pool-spillover– and partial-volume–corrected tissue curves (cyan).

TABLE 2
Stress Pharmaceuticals Used in PET MPI

Agent Dose and administration Timing of radiotracer injection

Route of radiotracer

administration

Adenosine 140 mg/kg/min intravenous infusion for

4–6 min

Mid infusion Two intravenous lines are

preferred to prevent
mid-infusion interruption

of adenosine

Dipyridamole 0.56 mg/kg intravenous infusion over 4 min 3–5 min after completion of

infusion

Single intravenous line for

both stress agent and

radioisotope

Regadenoson 0.4-mg rapid intravenous bolus (over 10 s) Immediately after 10-mL

saline flush*

Single intravenous line for

both stress agent and
radioisotope

Dobutamine Stepwise increase in infusion from 5 or 10 μg/kg/min
up to 40 μg/kg/min to achieve .85% predicted

heart rate; atropine boluses may be used to

augment heart rate response

Once target heart rate is
achieved; continue

dobutamine infusion for 1–2

min after radiotracer injection

Single intravenous line for
both stress agent and

radioisotope

*One recent study has suggested that injection of 82Rb at 55 s, compared with 10 s, after injection of regadenoson resulted in greater

maximal hyperemic MBF (2.33 ± 0.57 vs. 1.79 ± 0.44 mL/min/g) and correlated better with hyperemic MBF with dipyridamole (2.27 ± 0.57
mL/min/g) (211).
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Imaging Protocols

Typically, rest imaging is followed by stress imaging on the
same day. Stress-first or stress-only imaging is feasible, but it is
not routine practice with quantitative PET. Although several
studies have suggested that peak hyperemic MBF is superior to
MFR (45–47), most studies have concluded that MFR is more
powerful for risk stratification (48–53), perhaps because of de-
creased variability compared with peak hyperemic MBF (54).
Whether postischemic stunning affects resting MBF with stress-
first imaging has not been well studied. Importantly, if regade-
noson is used, reversal with 150 mg of aminophylline may not
be sufficient to restore resting perfusion conditions (55). More
data are needed before a transition to routine stress-only imag-
ing for quantitative PET MBF imaging can be recommended.

Radiotracer Protocols

Table 1 lists doses of clinically used PET radiotracers for MBF
imaging. The “Perfusion Tracers” section covers radiotracer prop-
erties in greater detail. Adjustment of injected activity for patient
weight, body mass index, or attenuation is preferable to optimize
trade-offs between the quality of delayed images and the potential
for detector saturation with 3D PET. Use of automatic injectors
will facilitate uniform delivery of the radiotracer and standardize

the input function for MBF quantitation. Consistent tracer injec-
tion profiles may have advantages for reliable quantification of
MBF (26), although additional clinical data will be helpful (25).

Image Acquisition and Reconstruction Parameters

Images are acquired and reconstructed using standard vendor-
specific parameters. Briefly, after low-dose CT or a radionuclide
localizing scan to position the heart, a dynamic or preferably list-
mode acquisition is obtained in 2D or 3D mode. List-mode
acquisition provides comprehensive data for static images, gated
images for left ventricular volumes and ejection fraction, and
dynamic images for MBF quantitation. It is important to keep
the patient positioned consistently between the transmission and
emission scans. Misalignment of the attenuation CT and PET
emission images, potentially exacerbated by patient and respi-
ratory motion during hyperemic stress, may introduce moderate
to severe artifacts (56) in as many as 1 in 4 studies and can
result in significant changes in MBF quantification (57). Camera
vendors offer software to manually confirm and adjust align-
ment of the retention-phase PET images with the attenuation
CT scan during image reconstruction. However, patient motion
during the first-pass transit can produce inconsistent alignment
of the dynamic image series, leading to attenuation artifacts and

TABLE 3
MBF and MFR Reference Ranges for 13N-Ammonia PET

Publication

Sample

size (n) Age (y) Stress agent

Rest MBF

(mL/min/g)

Stress MBF

(mL/min/g) MFR

Hutchins et al. (212) 7 24 ± 4 Dipyridamole 0.88 ± 0.17 4.17 ± 1.12 4.80 ± 1.30

Chan et al. (213) 20 35 ± 16 Dipyridamole 1.10 ± 0.20 4.33 ± 1.30 4.00 ± 1.30

Czernin et al. (67) 18 31 ± 9 Dipyridamole 0.76 ± 0.25 3.00 ± 0.80 4.1 ± 0.90

Czernin et al. (38) 11 27 ± 7 Dipyridamole NR 2.13 ± 0.28 NR

Nagamachi et al. (21) 30 33 ± 15 Dipyridamole/adenosine 0.62 ± 0.14 2.01 ± 0.39 NR

Yokoyama et al. (163) 14 56 ± 10 Dipyridamole 0.70 ± 0.17 2.86 ± 1.20 4.13 ± 1.38

Böttcher et al. (214) 10 24 ± 5 Dipyridamole 0.61 ± 0.09 1.86 ± 0.27 3.16 ± 0.80

Campisi et al. (215) 10 62 ± 6 Dipyridamole 0.68 ± 0.16 2.04 ± 0.30 3.16 ± 0.85

Nitzsche et al. (216) 15 28 ± 12 Adenosine 0.64 ± 0.09 2.63 ± 0.75 NR

Dayanikli et al. (159) 11 48 ± 8 Adenosine 0.68 ± 0.80 2.64 ± 0.39 4.27 ± 0.52

Sawada et al. (73) 6 36 ± 14 Adenosine 0.71 ± 0.12 2.49 ± 0.74 3.50 ± 0.69

Beanlands et al. (86) 5 27 ± 4 Adenosine 0.62 ± 0.09 2.51 ± 0.27 4.10 ± 0.71

Muzik et al. (217) 10 26 ± 6 Adenosine 0.77 ± 0.16 3.40 ± 0.57 4.60 ± 0.90

Muzik et al. (88) 20 44 ± 11 Adenosine 0.67 ± 0.11 2.85 ± 0.49 4.28 ± 0.65

Lortie et al. (22) 14 NR Dipyridamole 0.69 ± 0.09 2.71 ± 0.50 4.25 ± 0.91

DeGrado et al. (218) 8 NR Dipyridamole 0.76 ± 0.17 2.68 ± 0.75 3.61 ± 1.06

Tawakol et al. (71) 7 NR Adenosine 0.70 ± 0.19 3.51 ± 0.84 NR

Schindler et al. (219) 21 37 ± 13 Dipyridamole 0.61 ± 0.12 2.04 ± 0.37 NR

Quercioli et al. (70) 21 43 ± 11 Dipyridamole 0.71 ± 0.10 2.37 ± 0.49 3.38 ± 0.67

Valenta et al. (220) 26 38 ± 10 Dipyridamole 0.71 ± 0.13 2.29 ± 0.51 3.28 ± 0.70

Prior et al. (68) 50 42 ± 13 Dipyridamole/adenosine 0.64 ± 0.12 1.98 ± 0.44 3.40 ± 1.00

Renaud et al. (221) 14 31 ± 6 Dipyridamole 0.68 ± 0.12 2.86 ± 1.14 4.15 ± 1.57

Slomka et al. (27) 15 NR Adenosine 0.85 ± 0.16 2.77 ± 0.65 3.39 ± 1.22

Weighted mean 363 (total) 37.6 0.71 2.58 3.54

NR 5 not reported.
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severe bias in MBF (24). Differences in reconstruction methods may
have a substantial impact on measured MBF (58), and standard-
ization is critical. Iterative reconstruction per manufacturer rec-
ommendations is preferred for dynamic image series. Minimal
smoothing of the images is preferred for MBF quantitation.

Key Points

• To estimate MFR, maximal hyperemia is usually induced
with dipyridamole, adenosine, or regadenoson.

• Typical imaging protocols for quantitative PET imaging in-
volve rest imaging followed by stress imaging on the same
day, although stress-only protocols may have a role.

• Quality control of dynamic images and time–activity curves
is essential and should include inspection for emission–
transmission misregistration, patient motion, and evidence
of detector saturation.

PREFERRED NOMENCLATURE AND PHYSIOLOGIC

REFERENCE RANGES

Nomenclature

A variety of terms have been used in the quantitative PET
literature, including coronary flow reserve (CFR), MFR, MBF
reserve, and myocardial perfusion reserve. Additionally, in the
invasive and echocardiography literature, coronary flow velocity
reserve is used. Finally, relative quantification of increased per-
fusion, without formal quantification of underlying MBF at rest
and stress, has been referred to as myocardial perfusion reserve
index in the cardiac MRI literature and has more recently been
applied to quantification of SPECT images. The use of many
different terms in the literature has the potential for confusion.
Going forward and for this document, the preferred nomencla-
ture is to refer to quantitative measures at rest or stress as MBF
and the ratio of stress/rest MBF as MFR. Although this value
generally correlates well with invasively determined CFR (59–
64), PET methods do not measure volume of blood flow in the
epicardial coronary arteries directly but rather blood flow in
myocardial tissue. Thus, the term MFR is more appropriate.
The standard units of MBF are milliliters�minute21�gram21,
most commonly denoted as mL/min/g.

Resting MBF

Resting MBF as measured with PET and various positron-flow
radiotracers has been reported to range from 0.4 to 1.2 mL/min/g
(65–71). Apart from methodologic differences in radiotracer char-
acteristics, tracer kinetic models, and image analysis that may
introduce some variations between different studies, the variability
of the reported resting MBF values may be attributed in part to
differences in myocardial workload and thus the myocardial oxygen
demand of the left ventricle (66,67,72–74). Sex and genetic varia-
tions, including mitochondrial function, are also important determi-
nants contributing to the variability in resting MBF values (75).
MBF at rest and during some forms of stress is physiologically

coupled with myocardial oxygen demand and thus correlates
with indices of myocardial workload (e.g., rate–pressure prod-
uct, defined as the product of systolic blood pressure and heart
rate) (76–78). Consequently, resting MBF is commonly higher
in patients with higher arterial blood pressure or heart rate
(67,70,79,80). Age-related increases in resting MBF can be ex-
plained by rate–pressure product correction of increased systolic
blood pressures (67,81). Most of the reported PET-determined
resting MBF values have been higher in women than in men
(66,68,82,83). Although the causes of this sex difference are
not completely defined, hormonal effects on coronary circula-
tory function in women with CAD, and sex-dependent lipid pro-
file changes, may be important contributors (66,68,82,83). Finally,
in individuals with advanced obesity, resting MBF may also be
elevated as induced by a more enhanced activation of the sympa-
thetic nervous system and the renin–angiotensin–aldosterone axis,
resulting in higher resting heart rate and arterial blood pressure
(70,83,84).

Physiologic Ranges for MBF and MFR with 13N-Ammonia

and 82Rb-Chloride

In 23 studies involving a total of 363 healthy subjects
undergoing 13N-ammonia PET, the weighted mean MBF values
at rest and stress were 0.71 mL/min/g (range, 0.61–1.1) and
2.58 mL/g/min (range, 1.86–4.33), respectively (Table 3). Weighted
mean MFR was 3.54 (range, 3.16–4.8). The corresponding values for
382 healthy subjects from 8 studies using 82Rb PET are a weighted
mean resting MBF of 0.74 mL/g/min (range, 0.69–1.15), a weighted

TABLE 4
MBF and MFR Reference Ranges for 82Rb PET

Publication

Sample

size (n) Age (y) Stress agent

Rest MBF

(mL/min/g)

Stress MBF

(mL/min/g) MFR

Lin et al. (222) 11 NR Dipyridamole 1.15 ± 0.46 2.50 ± 0.54 NR

Lortie et al. (22) 14 NR Dipyridamole 0.69 ± 0.14 2.83 ± 0.81 4.25 ± 1.37

Manabe et al. (223) 15 29 ± 9 Adenosine triphosphate 0.77 ± 0.25 3.35 ± 1.37 4.47 ± 1.47

Prior, et al. (224) 22 30 ± 13 Adenosine 1.03 ± 0.42 3.82 ± 1.21 3.88 ± 0.91

Sdringola et al. (225) 56 30 ± 13 Dipyridamole 0.72 ± 0.17 2.89 ± 0.50 4.17 ± 0.80

Johnson et al. (171) 241 28 ± 5 Dipyridamole 0.70 ± 0.15 2.71 ± 0.58 4.02 ± 0.85

Germino et al. (226) 9 28 ± 6 Regadenoson 0.92 ± 0.19 3.65 ± 0.64 NR

Renaud et al. (221) 14 31 ± 6 Dipyridamole 0.73 ± 0.15 2.96 ± 0.89 4.32 ± 1.39

Weighted mean 382 (total) 28.6 0.74 2.86 4.07

NR 5 not reported.
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mean stress MBF of 2.86 mL/g/min (range, 2.5–3.82), and a
weighted mean MFR of 4.07 (range, 3.88–4.47) (Table 4). It is
critical to realize that these values represent physiologic ranges de-
rived from young, healthy volunteers without coronary risk factors.
In clinical populations, which are generally older and have a sub-
stantial burden of coronary risk factors, values below these ranges

may frequently be seen and may not represent obstructive epicardial
CAD. Instead, modest reductions in stress MBF or MFR below these
reference ranges are often due to the effects of diffuse CAD and
microvascular disease. A detailed discussion of abnormal thresholds
for reporting and clinical action is found in the “Interpretation and
Reporting” section.

FIGURE 6. Clinical utility of blood flow quantification. In this example, from 81-y-old man with hypertension and dyslipidemia, relative MPI (A) with
82Rb PET demonstrated only mild, reversible perfusion abnormality involving distribution of left anterior descending coronary artery. However, MFR

was severely reduced globally at 1.11. Nearly entire heart had severely reduced MFR except for inferior and inferolateral walls, where it was only

moderately reduced. Coronary angiography (B) showed severe stenosis of mid portion of left main coronary artery.

CLINICAL QUANTIFICATION OF MBF USING PET • Murthy et al. 281

by SNMMI headquarters on August 30, 2018. For personal use only. jnm.snmjournals.org Downloaded from 

http://jnm.snmjournals.org/


Key Points

• Although many terms have been used, MBF and MFR are the
preferred terms for describing quantitative measures of blood
flow.

• Physiologic reference ranges for rest and stress MBF and
MFR vary by tracer and may be slightly higher for 82Rb than
for 13N-ammonia.

INDICATIONS AND APPLICATIONS

CAD Diagnosis

A relationship between the severity of epicardial coronary
artery stenoses and PET measures of both peak hyperemic stress
MBF and MFR has been established for more than 2 decades (85).
Though initially established using 15O-water, this finding was
quickly replicated using 13N-ammonia (86–88) and more recently
using 82Rb (89,90). The application of stress MBF and MFR for
improving the diagnostic accuracy of PET MPI with clinical
protocols has been investigated by many groups with both
13N-ammonia (47,48,88) and 82Rb (52,91). Although these stud-
ies have consistently demonstrated improved diagnostic sensitivity
(case example in Fig. 6), at least 2 large studies have raised con-
cerns about potential for decreased specificity (Fig. 7) (52,91),
possibly due to the contributions of diffuse atherosclerosis and
microvascular disease to stress MBF and MFR measurements.
Consequently, the positive predictive value of even severely de-
pressed MFR (,1.5) is only modest (52,91). Conversely, pre-
served MFR (.2.0) has an excellent negative predictive value
for high-risk CAD (i.e., left main and 3-vessel disease), and
high-risk disease is extremely uncommon with an MFR of more
than 2.5 (52,91) (see the “Interpretation and Reporting” section 6
for a more detailed discussion).

Prognostic Assessment

The incremental prognostic value of PET measures of stress
MBF and MFR in patients with known or suspected CAD

referred for clinical stress testing has also been extensively
evaluated (Table 5) (46,49,50,53,92–94). Consistently, patients
with more severely reduced stress MBF and MFR are at higher
risk than patients with preserved values or modest reductions. An
analysis of the relationship between MFR and cardiac mortality
suggests an excellent prognosis for an MFR of more than 2 and a
steady increase in cardiac mortality for an MFR of less than 2
(Fig. 8) (54). The largest of these studies has demonstrated that as
many as half of intermediate-risk subjects may be reclassified on
the basis of MFR, even after accounting for clinical characteris-
tics, relative MPI interpretation, and left ventricular ejection frac-
tion (95). Consequently, in patients at higher clinical risk, for
whom even a low-risk relative assessment of MPI may be insuf-
ficiently reassuring (i.e., those likely to remain at intermediate
posttest risk), referral for stress PET with quantification of MBF
may be preferable as an initial test over relative MPI alone, such as
with SPECT imaging.

Treatment Guidance

At present there are no randomized data supporting the use
of any stress imaging modality for selection of patients for
revascularization or for guidance of medical therapy. Observa-
tional data have established a paradigm that patients with greater
degrees of ischemia on relative MPI are more likely to benefit
from revascularization (96). This paradigm has been conceptu-
ally extended to include MFR and stress MBF (97) but has not
yet been evaluated prospectively. Although observational data
are limited to one single-center study with relatively small sam-
ple sizes, there is some evidence that early revascularization is
associated with a more favorable prognosis only in patients with
a low global MFR and that patients with a low MFR may benefit
more from coronary artery bypass grafting than from percutane-
ous revascularization (98).

Special Populations

Diabetes Mellitus. Patients with diabetes mellitus are at
significantly increased risk of CAD and its complications (99).
Furthermore, diabetic patients may have extensive, high-risk
CAD even with low-risk relative MPI findings (100), and diabetic
patients with low-risk relative MPI findings may still be at signif-
icantly elevated risk of CAD complications (101). Important con-
tributors to these concerning findings may be increased rates of
diffuse epicardial CAD and microvascular disease among diabetic
patients. Consequently, the improved performance of quantitative
measures with PET compared with relative MPI is likely to be of
particular value. In a large series of 1,172 patients with diabetes
compared with 1,611 patients without diabetes, incorporation of
MFR into PET assessment allowed identification of the 40% of
diabetic patients who were at high risk (at equivalent risk to those
with clinically recognized CAD) compared with the remainder, who
experienced event rates comparable to individuals without diabetes
(102). Given the important limitations of relative MPI among di-
abetic patients, PET with quantification of blood flow is preferable
to SPECT among patients with diabetes mellitus.
Chronic Kidney Disease. Cardiovascular disease is the leading

cause of death among patients with moderate to severe renal
dysfunction (103), and early referral for revascularization may be
beneficial in patients with suitable disease (104). However, pa-
tients with underlying renal dysfunction are also at increased risk
of complications after angiography and revascularization (105–
107). Unfortunately, as with diabetic patients, traditional relative

FIGURE 7. Receiver-operator characteristic curves for detection of

severe CAD using MFR. As the threshold for abnormal MFR is de-

creased from 3.0 to 0.5, sensitivity for high-risk CAD (2-vessel disease

including proximal left anterior descending artery, 3-vessel disease, and

left main coronary artery) decreases (blue line). Conversely, with lower

thresholds for defining abnormal MFR, specificity progressively in-

creases (red line). (Adapted from Naya et al. (91).)
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MPI is unable to identify truly low-risk patients (108). Two series
from one center have shown that PET measures of MFR have
greater prognostic value than do clinical and relative MPI param-
eters in patients with chronic kidney disease (109) and patients
requiring renal replacement therapy (110).
Cardiomyopathy and Heart Failure. In many cases, relative

MPI lacks sufficient negative predictive value to adequately rule
out an ischemic etiology in patients with severe reductions in
systolic function (4). However, patients with heart failure are also
at increased risk of complications from invasive coronary angiog-
raphy. Consequently, the excellent negative predictive value of
preserved MFR may be of particular value in excluding severe
multivessel CAD in patients with cardiomyopathy (52,91). Fur-
thermore, in patients with both ischemic and nonischemic cardio-
myopathies, impaired MFR is associated with markedly increased
rates of major adverse cardiac events and cardiac death (111).
However, it is important to note that abnormalities in MFR have
been identified in cardiomyopathies of numerous etiologies (112–
116). Consequently, whereas a low MFR does not necessarily
imply an ischemic etiology, ischemic cardiomyopathy is ex-
tremely unlikely with well-preserved MFR. Nonetheless, the prog-
nostic value of MFR is likely to be important regardless of
etiology (111,113,116).
Heart Transplantation. Patients who have undergone heart

transplantation may develop coronary allograft vasculopathy
(CAV), a pathologic entity distinct from atherosclerotic CAD. In
CAV, intimal fibromuscular hyperplasia and intimal–medial hyper-
plasia cause smooth narrowing of the coronary arteries with an
attendant decrease in vasodilator capacity and MBF (117,118).
Because arteries are usually smoothly narrowed, traditional non-
invasive diagnostic techniques such as stress SPECT MPI and
stress echocardiography may be limited compared with invasive
imaging of the vessel wall using intravascular ultrasound or opti-
cal coherence tomography (119–123). Smooth narrowing of all
vessels may result in normal relative MPI findings or only modest
distal perfusion deficits despite global reductions in perfusion and
vasodilator capacity. Invasive measures of MFR have been related
to adverse outcomes (124). PET measures of MBF or MFR have
been shown to correlate with invasive measures of CAV (125) and
to identify patients at risk of developing CAV (126). Recently, a

relatively large study of 140 patients with
prior heart transplantation demonstrated
that impaired MFR identified those at risk
of developing clinical events (127). Indeed,
investigational therapies for CAV have
demonstrated an ability to improve PET mea-
sures of MFR (128). Of note, early after trans-
plantation, decreases in MFR may not reflect
early CAV (129,130), possibly because of
resting hyperemia. In this early stage, stress
MBF may have greater value. Despite this
limitation, quantification of MBF in patients
with prior heart transplantation has substantial
well-established advantages over competing
noninvasive methods of CAV diagnosis.
The Elderly. Older patients, by virtue of

age alone, are at increased risk of mortality.
However, among those of extremely ad-
vanced age, cancer rather than cardiovas-
cular disease is the leading cause of mortality.
Furthermore, whereas CAD is highly preva-

lent, the increased risks of invasive investigation and revasculari-
zation may shift the balance in some cases toward medical therapy
rather than invasive approaches. One unpublished study has dem-
onstrated that MFR assessment with PET may be able to identify
patients aged 75 and older with excellent prognosis for survival free
of cardiac death (131). Further investigation is of great interest.
Women. There is much debate in the literature (132,133) over

optimal strategies for evaluation of known or suspected CAD in
women. An important consideration is that a sizeable proportion
of symptomatic women may have no evidence of obstructive
CAD but are nonetheless at increased risk of cardiac complications
(134,135). In part, this may be due more to impaired vasomotor
function or microvascular disease than to epicardial obstructive
stenoses in women compared with men (136). PET assessment of
MFR has been demonstrated to be effective in both sexes and can
readily identify evidence of epicardial obstructive disease, as well as
diffuse CAD and microvascular function, noninvasively (137).
Chest Pain with Normal Findings on Coronary Angiography. In

both men and women with CAD risk factors but without overt
epicardial CAD, coronary vasomotor dysfunction is highly preva-
lent and can be identified with PET (137). This is likely due to the
presence of diffuse disease and microvascular dysfunction and may
be present even in the absence of coronary artery calcium (138). In
one study of 901 patients referred for suspected CAD who had
normal relative MPI results, patients with an MFR of less than 2
experienced a 5.2%/y rate of major adverse cardiac events, even
with a coronary artery calcium score of zero. Consequently, assess-
ment of MFR with PET has significant prognostic value even in
patients believed to be at low risk on the basis of relative MPI.

Key Points

• Use of stress MBF and MFR for diagnosis is complex, as di-
abetes, hypertension, age, smoking, and other risk factors may
decrease stress MBF and MFR without focal epicardial stenosis.

• Patients with preserved stress MBF and MFR are unlikely to
have high-risk epicardial CAD.

• Severe reductions in global MFR (,1.5) are associated with a
substantially increased risk of adverse outcomes and merit
careful clinical consideration.

FIGURE 8. Relationship between MFR and risk of cardiac death. Regardless of which 82Rb

tracer kinetic model is used, similar pattern of rising risk with MFR , 2 is seen. 1:1 indicates

fictitious 100% extraction (MBF 5 K1), which approximates assumptions for myocardial perfu-

sion reserve index. (Adapted from Murthy et al. (54).)
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• A preserved global MFR of more than 2.0 has an excellent
negative predictive value for high-risk CAD (i.e., left main
and 3-vessel disease).

INTERPRETATION AND REPORTING

Reporting Quantitative MBF Data

One of the practical applications of measuring MBF and MFR
with PET is the potential utility of these quantitative physiologic
measures in improving the accuracy with which angiographic
CAD is detected and its physiologic severity characterized,
thereby allowing more informed decisions on referrals for cardiac
catheterization and, potentially, revascularization. The decision on
when and how to report MBF and MFR values in the context
of MPI PET studies requires understanding of what is being
measured, as well as the strengths and relative weaknesses of such
physiologic parameters for clinical decision making.
The rationale for using quantitative MBF data for uncovering

epicardial CAD is based on the relationship between peak
hyperemic MBF and MFR and the severity of coronary lesions
on coronary angiography demonstrated in experimental models of
coronary stenosis (139,140) and in humans with atherosclerosis
(85–88). The findings of human studies that have measured MBF
and MFR noninvasively by PET, as well as angiographic stenosis
severity, can be summarized as follows:

• In humans, resting MBF remains relatively preserved across a
wide range of coronary stenosis severity (85,86), which is
largely related to the gradual autoregulatory vasodilation of
resistive vessels to maintain resting myocardial perfusion in
the setting of upstream stenosis. Resting MBF falls only in
the presence of critical subocclusive stenosis and poorly de-
veloped collateral blood flow.

• The activation of the compensatory autoregulatory changes
described above results in a progressive loss in maximum
vasodilator capacity with increasing stenosis severity, which
is manifested by gradual reductions in hyperemic MBF and
MFR as measured by PET (85–87).

• In general, hyperemic MBF and MFR are relatively preserved
for coronary lesions with less than 70% angiographic stenosis
or with preserved fractional flow reserve (FFR) (.0.8)
(45,47,51,52,85–89,91,141,142). However, both may be re-
duced even in the absence of overt obstructive stenosis, espe-
cially in higher-risk subgroups (e.g., diabetes and prediabetic
states (143–154), hypertension (155–158), dyslipidemia (159–
163), and chronic kidney disease (109,110,164,165)).

• Hyperemic MBF and MFR are consistently reduced in lesions
with greater than 70% luminal narrowing or those with ab-
normal FFR (45,47,51,52,85–89,91,141,142).

• Coronary stenosis of intermediate severity (e.g., 40%–90%) is
associated with significant variability in hyperemic MBF and
MFR. For any degree of luminal stenosis, the observed phys-
iologic variability is likely multifactorial and includes the fol-
lowing: geometric factors of coronary lesions not accounted
for by a simple measure of minimal luminal diameter, includ-
ing shape, eccentricity, length, and entrance and exit angles, all
of which are known to modulate coronary resistance (166,167);
development of collateral blood flow (166,167); and presence
of diffuse coronary atherosclerosis and microvascular dysfunc-
tion (combination of endothelial and smooth muscle cell dys-
function in resistive vessels, and microvascular rarefaction)

(168), all of which are consistent findings in autopsy and in-
travascular ultrasound studies of patients with CAD (169,170).

Is there a physiologic threshold of hyperemic MBF or MFR that
can be routinely used to accurately predict obstructive stenosis on
coronary angiography? The simple answer is no. The available
data from the published literature include a mix of patients with
suspected or known CAD (e.g., prior myocardial infarction or
percutaneous coronary intervention) and used different endpoints
for defining lesion severity (e.g., visual or quantitative coronary
stenosis severity, angiographic risk scores, or FFR) and method-
ologies for measuring MBF (e.g., 15O-water, 13N-ammonia, or
82Rb using different quantitative approaches), resulting in multiple
different thresholds being proposed to improve detection of ob-
structive angiographic CAD. Nonetheless, there are a few areas of
agreement that have potentially important practical implications
for including quantitative flow data in clinical PET MPI reports:

• A preserved global hyperemic MBF and MFR consistently
reduce the probability of high-risk angiographic CAD (i.e.,
obstructive proximal stenosis in all 3 major coronary arteries,
or left main disease). A global hyperemic MBF of more than
2 mL/min/g and MFR of more than 2 reliably exclude the
presence of high-risk angiographic CAD (negative predictive
value . 95%) (51,52,91).

• A severely reduced global hyperemic MBF and MFR iden-
tify patients at high risk for major adverse cardiovascular
events, including death. Although thresholds may vary in
different labs using different software, in general an MFR
of less than 1.5 should be considered a high-risk feature on
MPI PET (46,49,50,53,92,94,98,102) and is associated with
an increased likelihood for multivessel obstructive CAD
(51,52,91). In these patients, angiographic evaluation may
be necessary to exclude disease that can potentially by
revascularized (98).

• A severe reduction in hyperemic MBF (,1.5 mL/min/g) or
MFR (,1.5) in a single vascular territory in a patient with
normal MPI PET results by semiquantitative visual analysis
should raise the possibility of flow-limiting CAD.

It is important to understand that these thresholds may vary in
different labs using different software, and consequently, this
should be viewed as a guide. Although individual labs may adopt
variations of these thresholds, the general principle that coronary
anatomy may need to be defined in patients with severely reduced
MFR remains important.

Hyperemic MBF, MFR, or Both?

Hyperemic MBF and MFR provide useful information on
coronary vasodilator flow capacity and characterization of flow-
limiting CAD. Both parameters also share the same limitation for
differentiating predominant focal obstructive stenosis from diffuse
atherosclerosis and microvascular dysfunction. For most patients,
the information from these two parameters is concordant (normal
or abnormal) (171). However, in a minority of patients the infor-
mation may be discordant. Since MFR is a ratio between hyper-
emic and resting MBF, unusually low or high resting MBF will
affect MFR and result in discrepant findings compared with the
hyperemic MBF value. For example, patients with prior myocar-
dial infarction may show relatively preserved MFR in infarct-
related territories because of low resting MBF. Conversely,
patients with normal hyperemic MBF but unusually high resting
MBF (e.g., women and heart transplant recipients) may show a
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relatively reduced MFR. Consequently, both parameters should be
considered in the interpretation of the test results.
In studies that have examined the incremental value of MBF

quantification for predicting obstructive coronary stenosis on
angiography, both hyperemic MBF and MFR have performed
similarly (45,47). This suggests that stress-only imaging may be
effective in selected patients, especially those without known
CAD and normal left ventricular ejection fraction in whom resting
MPI may be unnecessary to assess defect reversibility.
From a prognostic perspective, MFR provides better incremen-

tal risk stratification than hyperemic MBF alone (50,53). Further-
more, patients on medical therapies that reduce resting MBF, such
as b-blockers, may have reduced hyperemic MBF due to disease
but may be asymptomatic because of adequate MFR and thus not
be in need of intervention (10), further justifying the need to mea-
sure both resting and hyperemic MBF to derive the MFR.

Complementary Role of Coronary CT Angiography

The addition of coronary CT angiography can be quite helpful to
differentiate patients with extensive obstructive CAD from those
with predominantly microvascular dysfunction (172–176). The ad-
dition of CT angiography information can improve the specificity
of PET, especially in the setting of abnormal MBF values (35).

Special Considerations for Reporting MBF and MFR

MBF and MFR studies should be conducted and interpreted by
experienced labs. The interpretation must consider the clinical con-
text and the question being asked by the referring provider—for
example, whether the question is specifically regarding myocardial
ischemia, the hemodynamic significance of disease, microvascular
disease, transplant vasculopathy, or some combination of these. The
interpretation must also consider the findings of other imaging stud-
ies, including electrocardiography changes, coronary calcium score,
and coronary anatomy (if CT angiography is performed), as well as
high-risk features such as transient ischemic dilation, right ventricu-
lar uptake, and lack of augmentation of systolic function with stress.
The reporting physician needs to consider how the information

will add value to the diagnostic information and potentially affect
decision making so as not to lead to unnecessary testing or
undertesting. Conditions known to be associated with diffuse
atherosclerosis or microvascular dysfunction that would impair
global MFR need to be considered, such as renal failure, prior
bypass surgery, and global left ventricular dysfunction. As noted,
conditions under which accurate measurement of MFR may not
be possible, as in large regions of myocardial infarction, should
also be considered. Because these conditions are often already
associated with an increased risk of events, the added value of
MBF and MFR measurements for prognostication may be limited
under these circumstances (Table 6).
Special consideration must be made when there is no flow

augmentation. Typically, there is some type of change even for
severe MFR impairment, and the change is often heterogeneous;
that is, some regions may decrease, suggesting steal, and some
may increase. Likewise, such severe impairments are often
accompanied by other findings, such as transient ischemic
dilation, right ventricular uptake, electrocardiography changes, or
regional ischemia on relative MPI. When these are not present,
when perfusion appears normal, and when errors in stress-agent
administration have been excluded—yet MFR is uniform at 1.0 or
very close to 1.0—the possibility should be considered that the
patient has ingested caffeine or is not responsive to vasodilator

stress. The test may need to be repeated with a different stress
agent such as dobutamine (Table 6) (177,178).

Key Points

• Preserved stress MBF of more than 2 mL/min/g and MFR of
more than 2 reliably exclude the presence of high-risk angio-
graphic disease (negative predictive value . 95%) and are
reasonable to report when used in clinical interpretation.

• A severely decreased global MFR (,1.5 mL/min/g) should
be reported as a high-risk feature for adverse cardiac events
but is not always due to multivessel obstructive disease. The
likelihood of multivessel obstructive disease may be refined
by examination of the electrocardiogram, regional perfusion,
coronary calcification, and cardiac volumes and function.

• Regional decreases in stress MBF (,1.5 mL/min/g) and
MFR (,1.5) in a vascular territory may indicate regional
flow-limiting disease.

PHYSIOLOGIC RELATIONSHIPS AMONG MFR, FFR, AND

RELATIVE FLOW RESERVE

Traditionally, treatment decisions on medical therapy, percuta-
neous coronary intervention, or coronary artery bypass grafting
have been based on the visual interpretation of the coronary

TABLE 6
Reporting MFR in Clinical Practice*

Report MFR any time MFR

adds value toward diagnosis

or stratification

Be cautious reporting

MFR† when MFR provides
no diagnostic or prognostic

value, might confuse

management, or might lead

to unnecessary tests

Normal perfusion, high

normal MFR

History of conditions

known to impair long-
term microvascular

function
Abnormal perfusion with

more severely or diffusely

reduced MFR than
expected

Chronic renal failure

Microvascular

measurements
specifically requested

Prior coronary artery

bypass grafting

Assessment of
hemodynamic

significance of lesion

specifically requested

Global left ventricular

dysfunction (suspected

cardiomyopathy)

Accurate MFR

measurement not

possible or might be
misleading

Large prior myocardial

infarction

Suspected caffeine/

methylxanthine
ingestion

*Adapted from Juneau et al. (178).
†Depending on experience of lab and understanding of MBF

and MFR concepts of referring provider, it may be appropriate to

not report findings under these circumstances to avoid confusion
and potentially unnecessary subsequent testing.
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angiogram, despite extensive evidence that subjective grading of
luminal stenosis correlates poorly with hemodynamic significance—
particularly for coronary stenoses between 30% and 80% of lumi-
nal diameter (179–181). Quantitative noninvasive and invasive
techniques are now available that go beyond standard interpretation
of anatomic coronary stenosis in making this functional assessment.
These include noninvasive assessment of maximum MBF and MFR
with PET, as well as invasive measurement of CFR and FFR. Non-
invasive estimation of FFR using CT has also recently been described
(182). Although both FFR and MFR can be used to assess the
functional significance of stenosis, what they actually measure,
their physiologic basis, and their clinical implications are distinct.

FFR

Invasive FFR has become a well-studied and increasingly used
technique providing a surrogate measure of flow limitation and
lesion-level ischemia. FFR assesses large-vessel coronary stenosis
and is defined as the ratio of maximal blood flow in a stenotic
artery relative to maximal flow in the same artery in the theoretic
absence of any stenosis (Fig. 9) (183–186). FFR is calculated as
the ratio of distal coronary pressure and aortic pressure, typically
measured using an intracoronary pressure wire during adenosine-
induced maximal hyperemia, based on the assumption that during
maximal vasodilation, coronary resistance is negligible.
An FFR of less than 0.75 was originally shown to detect

reversible ischemia, defined by noninvasive stress testing (thallium
SPECT and PET, dobutamine stress echocardiography, or exercise
stress testing), whereas an FFR of more than 0.8 excludes
ischemia with a predictive value of over 95% (184). Randomized
trials—including Fractional Flow Reserve versus Angiography for
Multivessel Evaluation (FAME) and FAME-2, which used an FFR
cutoff point of 0.8 (187,188)—have provided evidence that the use
of FFR to guide clinical decisions on coronary revascularization
results in reduced cardiac events. On the basis of these findings, the
use of FFR is now incorporated into guidelines on management of
patients with stable ischemic heart disease (187–189).

FFR, however, has multiple limitations
(190). In the presence of serial stenoses, a
distal lesion artificially reduces the pressure
gradient across the proximal lesion, leading
to an overestimation of the proximal le-
sion’s ratio of distal coronary pressure to
aortic pressure, thus underestimating its
functional significance (191,192). Con-
versely, the presence of a proximal lesion
artificially lowers this ratio for the distal
lesion. Further, FFR assumes an intact
microcirculation because this is the site
of action of adenosine. FFR can appear
falsely normal in the presence of micro-
vascular dysfunction or disease, since ele-
vated pressure distal to a critical stenosis,
associated with increased resistance due to
a microvascular abnormality, may result
in a normal pressure drop across a hemo-
dynamically significant lesion (193,194).
Further, in the presence of diffuse athero-
sclerosis, FFR may be abnormal even with-
out focal stenosis (195). Finally, in the
setting of excellent flow capacity, the clin-
ical significance of a reduced FFR across a

moderate lesion may be overestimated if peak flow is still suffi-
cient to meet myocardial oxygen demand. In this circumstance,
symptoms are unlikely to improve with revascularization despite
the reduced FFR.
More recently, the invasively measured instantaneous wave-

free ratio has been advanced as a quantitative metric—which
can be measured without use of a vasodilator—of the hemody-
namic significance of a lesion. Although there has been only
limited exploration of the relationships between the instanta-
neous wave-free ratio and MFR assessed by PET (196), incon-
sistencies between the instantaneous wave-free ratio and FFR
are common (197–199). Nonetheless, two randomized trials
have demonstrated that a strategy using an instantaneous wave-
free ratio of more than 0.89 to defer revascularization yielded
noninferior outcomes to a strategy using an FFR of more than
0.8 (200,201).

Assessments of MBF and Flow Reserve

Quantification of MBF using PET, allowing assessment of
peak hyperemic MBF as well as noninvasive calculation of
MFR, is physiologically distinct from FFR (202). Unlike FFR,
MFR evaluates the effects of abnormality over the entire cor-
onary circulation (Fig. 9). It therefore allows assessment not
only of the effects of focal epicardial coronary stenosis but also
of diffuse coronary atherosclerosis and microvascular dysfunc-
tion. As discussed above, an important clinical limitation of
blood flow quantitation compared with FFR is that it is difficult
to distinguish abnormality due to epicardial artery stenosis
from that due to diffuse atherosclerosis, microcirculatory dys-
function, or both. Relative flow reserve—the ratio of stress
MBF in regions subtended by stenotic arteries to stress MBF
in regions subtended by nonstenotic arteries—has been pro-
posed as one potential solution. However, as with relative as-
sessments of stress perfusion defects by PET, computation of
relative flow reserve requires an assumed or defined normal
zone for comparison.

FIGURE 9. Comparison of physiologic basis of FFR and MFR. FFR is affected by focal stenosis

and diffuse atherosclerosis of coronary macrocirculation, whereas index of microcirculatory re-

sistance (IMR) reflects disease of smaller vessels. However, because intact arteriolar microcir-

culation is required for action of adenosine, FFR may be falsely reassuring in setting of

microvascular dysfunction. MFR and CFR integrate entire coronary circulation. (Derived from

De Bruyne et al. (230).)
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CFR can also be measured invasively on a per-territory basis at
the time of cardiac catheterization, using an intracoronary wire
that assesses flow velocity (203). For invasive CFR, each vessel
must be assessed separately, with repeated runs of vasodilator for
maximal hyperemia. Importantly, for assessments of coronary
physiology during cardiac catheterization, FFR and CFR can
now be measured simultaneously with combined pressure sensor–
and flow sensor–tipped guidewires (204). More recently, quantitative
estimates of myocardial perfusion from Doppler echocardiogra-
phy (205,206) and contrast echocardiography (207) have emerged
as having clinical value.

Discrepancies Between FFR and MFR

The different physiologic basis of FFR and MFR measurements
explains how discrepancies between FFR and assessments of MBF
and MFR may arise. FFR, a lesion-based index, assumes uniform
endothelial function on either side of the lesion and an intact
microcirculation, whereas MBF and MFR consider the entire
vascular system of the heart as a totality (Fig. 9). Myocardial
ischemia associated with diffuse coronary atherosclerosis or mi-
crovascular disease in the absence of significant epicardial stenosis
will therefore affect MFR and FFR differently (208). Of note, a
current multicenter randomized clinical trial—DEFINE-Flow
(Distal Evaluation of Functional Performance with Intravascular
Sensors to Assess the Narrowing Effect–Combined Pressure and
Doppler Flow Velocity Measurements)—is assessing whether, in
the presence of an invasive CFR of more than 2 and coronary
lesions with an FFR of less than 0.80, percutaneous coronary
intervention can be safely deferred (209). Estimates of the func-
tional significance of coronary stenoses by FFR and the noninva-
sive or invasive CFR techniques usually agree. Concordantly
normal studies imply the absence of hemodynamically significant
epicardial or microvascular disease. Concordantly abnormal stud-
ies imply the presence of significant epicardial stenosis, with or
without additional diffuse atherosclerotic or microvascular dis-
ease. However, a study by Johnson et al., assembling all combined
invasive CFR and FFR measurements throughout the literature
(a total of 438 cases), reported only a modest linear correlation
between CFR and FFR (r 5 0.34, P , 0.001), with 30%–40% of
lesions showing discordance (210). Discordance is largely
explained by the mechanisms discussed above. When the discor-
dance is that low FFR is seen in regions with normal CFR, a flow
decrement that is insufficient to cause ischemia may be the most
likely cause, and percutaneous coronary intervention would be
unlikely to improve symptoms. The discordance of low MFR with
normal FFR is most commonly due to microvascular disease in the
setting of diffuse nonobstructive epicardial disease or in isolation
(193,194).
Thus, both FFR and MFR provide valuable physiologic in-

formation for patient management but assess different pathophys-
iologic processes. Knowledge of these differences is important in
understanding the frequently observed discordance between these
measurements. For invasive assessment, these considerations lend
impetus to increasing the use of physiologic measurements and
combining the results of FFR, MFR, and stenosis for a unified
interpretation. For noninvasive testing, they point to the value of
combining absolute quantitative and regional assessments of
perfusion with anatomic assessment—using coronary artery calci-
fication scans or angiography (either invasive or noninvasive)—in
settings in which overall clinical assessment based on the physi-
ologic approach alone is not definitive.

Key Points

• PET MFR/invasive CFR and invasive FFR are related but are
not interchangeable measures, with discordance in 30%–40%
of lesions.

• MFR and invasive CFR measure the combined hemodynamic
effects of epicardial stenosis, diffuse disease, and microvascu-
lar dysfunction. FFR measures the combined hemodynamic
effects of focal and diffuse atherosclerosis. Microvascular dys-
function increases coronary resistance and blunts the pressure
gradient across a stenosis and may sometimes lead to falsely
negative FFR readings of flow-limiting lesions. The latter may
explain some of the discrepancies between FFR and MFR/
CFR.

FUTURE CHALLENGES AND CONCLUSIONS

Quantification of MBF and MFR represents a substantial
advance for diagnostic and prognostic evaluation of suspected or
established CAD. These methods are at the cusp of translation to
clinical practice. However, further efforts are necessary to standardize
measures across laboratories, radiotracers, equipment, and software.
Most critically, data are needed supporting improved clinical
outcomes when treatment selection is based on these measures.
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